

Alternation Special Edition 8 (2013) 225 - 250 225
ISSN 1023-1757

A Pedagogical Intervention Based on

Agile Software Development Methodology

Sanjay Ranjeeth

Ashley Marimuthu

Manoj Maharaj

Abstract
In recent times, the activity of software development has been tagged as

being embroiled in a crisis because of the inability of software developers to

deliver quality software. In response, the software engineering (SE)

community have opted to discard the traditional processes that underpin

software development in preference for a set of processes that have been

termed as agile methodologies. The underlying philosophy of the agile

approach is that the software development process should enhance the

possibility of constant interaction with the customer and also be adept at

accommodating changing customer requirements. In this article, we examine

the pedagogical implications of using the agile approach as part of an

academic programme. We also report on students’ acceptance of the agile

approach as a methodological framework for the development of an

information system as part of their capstone major project course. A

purposive sampling strategy was employed to conduct a survey with final

year Information Systems & Technology students at the Pietermaritzburg and

Westville campuses of the University of KwaZulu-Natal. A 71% response

rate was achieved. A combined academic framework consisting of

behavioural science and design science theory was used to operationalise

acceptance of agile methodology. The results from each of the criteria used

to quantify acceptance of agile methodology indicate a high level of

acceptance of agile methodology within the IS student community.

Sanjay Ranjeeth, Ashley Marimuthu & Manoj Maharaj

226

Keywords: software development, information systems, agile methodology,

behavioural science, design science, constructivism, connectivism

Introduction
The broad discipline of information technology (IT) is anchored around the

core activity of software development which in turn, is historically grounded

within computer science (Shackelford et al. 2006). The focus in computer

science is on the delivery of functional software underpinned by a strong

mathematical component that ensures optimum usage of the processing

capacity of a computer (Glass 1994). In an overview report on academic

curricula in computing disciplines released by the Association for Computing

Machinery (ACM) (Shackelford et al. 2006), a post-modernistic view of

software development is adopted. The recommended strategy for disciplines

such as software engineering (SE) and information systems (IS) is that these

disciplines should focus on the non-functional aspects of software

development. As a consequence, software systems began to incorporate a

social dimension where the usability thereof began to assume as much

attention as functionality. The software development process models have

also begun to adopt a “business-like” demeanour where the imperative is that

quality software should be developed on time, within budget and to satisfy

requirements that have been stipulated by the customer. Recently, the activity

of software development has been tagged as being embroiled in a crisis

because of the inability of software developers to deliver quality software

that is usable and in accordance with customer’s expectations of the system

(Parnas 1994; Glass 1994; Schach 2008; Pressman 2010).In response to this

dilemma, the software engineering community has opted to discard the

traditional processes that underpin software development in preference of a

set of processes that have been termed agile methodologies. The underlying

philosophy of the agile approach is that the software development process

should enhance the possibility of constant interaction with the customer with

a view to efficiently accommodating changing customer requirements.

 Data recently released in the “State of Agile Development” survey

(VersionOne 2011), indicate a global acceptance of the agile approach as the

Pedagogical Intervention and Agile Software

227

current de-facto software process model of choice. It is reported in Cohn

(2012), that according to the Standish Group 2011 report, software

applications developed through the agile process have three times the success

rate of the traditional waterfall method and the agile process could be viewed

as a possible solution to the problem of failed software projects.

 In order to align the undergraduate curriculum offered by the

Discipline of Information Systems & Technology at the University of

KwaZulu-Natal (UKZN) towards the latest trends in industry, the capstone

project module offered at third year level has been re-designed in accordance

with the dictates of Extreme Programming (XP), a popular agile

methodology. The choice of XP is informed by claims made by Bergin, et al.

(2004) that XP has a positive influence on the learning of computer

programming and it facilitates the use of constructivism as a pedagogical

strategy

 In this article, we examine the pedagogical implications of using the

agile approach as part of an academic programme. We also report on the

students’ acceptance of the agile approach towards the building of an

information system as part of their capstone project course.

The Research Questions
The following research questions have been used to underpin the current

study.

 What does Agile Methodology of software development entail?

 What are the pedagogical challenges of implementing the Agile

Methodology as part of a capstone module?

 What is the students’ level of acceptance of Agile Methodology?

 How well did the students comply with the requirements of XP?

The Academic Dilemma
There is a growing body of opinion that suggests that research within the

disciplines of management studies as well as information systems is severely

lacking in relevance (Davenport & Markus 1999; de Villiers et al. 2007;

Holcombe & Thomson 2007), so much so that research produced at

Sanjay Ranjeeth, Ashley Marimuthu & Manoj Maharaj

228

universities will have minimal or no impact on the practitioner community.

Despite the acknowledgement by some members of the academic

community of the lack of relevance of academic research in the above

mentioned disciplines, there is still an exclusive focus on academic rigour

with very little consideration being given to the relevance of the research

effort (de Villiers et al. 2007;Worrall et al. 2007) . This has resulted in a

steady decline in the amount of funding that academics are generating from

business because the research produced is lacking in “real world” relevance.

There seems to be a strong preference within parts of the IS academic

community to engage with the “social dimensions of phenomena” (Pinch

2008), and to relegate the technology to a “black box” status. As a

consequence, “…the richness of important and interesting IS research

questions has been lost or severely limited” (Niederman & March 2012). A

further issue that compromises the relevancy and currency of IS research is

that of the time delay, as identified in Knight et al. (2008), between the

problem inception and the publication of the results of an attempted solution

in an academic journal. The academic community seems to wait for emerging

trends in the practitioner sector before any research in that area is conducted

and eventually published. Hence, it is actually the academic community that

is always playing “catch-up” thereby trivialising the value of academic

research to the practitioner community (van Loggerenberg 2007).

 An ideal resolution to this dilemma of keeping abreast of technology

change as well as bridging the gap between the world of practitioners and the

world of academics is to incorporate the technologies and methodologies that

are current, from a practitioner perspective, into research and development

projects that drive academic curricula of universities. This strategy would

entail a revisit to the relevance versus rigour debate because it would entail a

resurrection of the importance of producing IS research that is current and

relevant (widely discussed in the Alternation Journal, titled Themes in

Management Studies (2007)). This solution strategy has been extensively

deliberated upon and endorsed by Rosemann and Vessey (2008); van

Loggerenberg (2007); Jami and Shaikh (2005); Fällman and Grönland

(2002); Benbasat and Zmud (2003); Davenport and Markus (1999) and Lee

(1999). As a consequence of the imperative to produce relevant IS research,

Hevner et al. (2004) made reference to the two main domains of IS research.

The first domain is behavioural science, where theories exist to explain the

Pedagogical Intervention and Agile Software

229

usage of IT artefacts in an organisational context. The dominant theories in

this domain focus on the usage, perceived usefulness or intended usage of IT

artefacts (referred to as the Technology Acceptance Model (TAM) proposed

in Davis (1985)) or the utility value and information quality delivered by an

IT artefact (referred to as the Information System Success Model proposed

by Delone and Mclean (2004)). The second domain of IS research is design

science, where the focus is on the development of an IT artefact,

encompassing an evaluation of the feasibility of the development process. In

order to enhance the relevance of IS research, the design science domain

needs to be given just as much prominence as the behavioural science

domain (Hevner et al. 2004; Niederman & March 2012; Kuechler &

Vaishnavi 2011; Wieringa & Moralı 2012). This approach of delving into

the “black box” whereby IS researchers view behavioural and design science

as interdependent (Niederman & March 2012) can only serve to add an

element of “richness” and broaden the impact of IS research.

 In accordance with these sentiments, the current study incorporates

elements of the technological and social science realms to investigate the

applicability of the agile approach towards software development in an

educational context. From a technological perspective, the XP process was

subjected to an inquiry regarding its effectiveness as a software process

model to develop an information system. From a social science perspective,

the effectiveness of the strategies adopted to teach the essence of XP as part

of a capstone module was also analysed.

Software Process Models
The development of software is underpinned by software process models that

are adaptations of the generic software life-cycle model referred to as the

Waterfall model which was proposed by Royce (1970). Many of these

adaptations have been given extensive coverage in software engineering texts

written by Schach (2008), Pressman (2010) and Sommerville (2007). The

main theme emanating from these texts is that the Waterfall model of

software development is characterised by a linear or sequential approach

consisting of various stages of development. From an overview perspective,

these development stages consist of requirements, analysis, design,

implementation, testing and maintenance. The Waterfall process is quite

Sanjay Ranjeeth, Ashley Marimuthu & Manoj Maharaj

230

rigidly structured and does not easily handle changing software

requirements; which entails the developer going back to the requirements

stage (the analogy used here is that it is not natural to flow up a waterfall).

The Waterfall model is a process oriented model where the process of

development is given priority over the possibility of entertaining changing

user requirements. In its purest form, the Waterfall model has been subjected

to severe criticism from the SE community. These criticisms, which have

been summarised in Parnas and Clements (1985), include the following:

 A system’s users seldom know exactly what they want and cannot

articulate all they know.

 Even if the system’s users could state all requirements, there are

many details that they can only discover once they are well into

implementation.

 Even if the system’s users knew all these details, as humans we can

master only so much complexity.

 Even if the system’s users could master all this complexity, external

forces lead to changes in requirements some of which may invalidate

earlier decisions.

 These factors prompted the SE community to look at other process

models. A possible contender was the iterative process model that began to

receive attention after a proposal by Basili and Turner (1975) that software

development should follow an “iterative enhancement” technique. The idea

here is that the software process model has to accommodate changing user

requirements as well as deliver functionality incrementally to the user rather

than as a complete finished product. This endorsement of iterative software

development by the SE community prompted a group of software engineers

to formalise the set of iterative development models as the Agile

Methodology for software development. The Agile Methodology is informed

by a set of core principles and values that is documented by Beck et al.

(2001) in what is referred to as the Agile Manifesto. The essence of the

manifesto is that software development should prioritise:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

Pedagogical Intervention and Agile Software

231

 Customer collaboration over contract negotiation

 Responding to change over following a plan

 The Agile Methodology comprises a set of methods that subscribes

to the core principles of the Agile Manifesto. A detailed analysis of these

agile methods are provided in Dybå and Dingsøyr (2008). It is reported in

van Valkenhoef et al. (2011), Dybå and Dingsøyr (2008) as well as

Vijayasarathy and Turk (2008), that one of the more popular agile methods is

Extreme Programming (XP). An overview of the XP process model is

provided in Beck (1999), and some of the significant aspects of XP include

the following:

 System development is driven by user stories. A user story is

essentially communication between the customer (person who

commissioned the development of the system) and the system

developers. A user story is a brief, concise description of the

functionality required by the customer.

 A set of user stories are developed and released for customer review.

This is referred to as one of many iterations of the system until it is

fully developed.

 The customer must be available for consultation with the

development team, thereby entrenching the idea of greater customer

interaction.

 A customer provides test criteria that will determine whether a user

story has been developed to the customer’s preference.

 All production code is written by two people using a single

computer. This strategy is referred to as pair programming, an agile

computer programming strategy that is given extensive coverage in

Hulkko and Abrahamsson (2005) and Vanhanen and Korpi (2007).

 There is no overall, architectural design. The system design evolves

with the development. There is constant re-factoring of the system

design as the system evolves.

 The XP method of software development was introduced as part of

the learning experience for students registered for the Major Project capstone

Sanjay Ranjeeth, Ashley Marimuthu & Manoj Maharaj

232

module offered by the Discipline of Information Systems and Technology

(IS&T) at UKZN. In this article, we report on the pedagogical challenges of

incorporating an agile approach such as XP into a Major Project capstone

module as well as the effectiveness of the XP process in developing an

information system, from a student perspective.

The Essence of the Major Project
The Major Project is a reference to a set of final year modules where IS&T

students are required to work in groups of 4 or 5 and build an information

system for an organisation (typically, a local business) that is prepared to

serve as a client. The ultimate purpose of the system is to provide

organisational decision making support where business reports are accessible

on a front-end or Web based platform. In order to achieve this objective, the

system would have to initially capture and process as much data as possible

from core business transactions so that the data can be analysed from many

different perspectives.

 The Major Project provides an ideal opportunity to allow academics

as well as students to bridge the divide between the practitioner and

academic worlds. It is reported in Holcombe and Thomson (2007) that at the

University of Sheffield, a similar strategy was used to provide students with

a large scale project and real client, thus motivating the students as well as

providing academic staff with a viable opportunity to engage in current,

“cutting edge” research. The value inherent in the Major Project from a

student perspective is well documented in Strode and Clark (2007). Lynch et

al. (2007) analysed student and academic perspectives of the Major Project

undertaken at academic institutions in the United Kingdom, South Africa and

Australia. They reported that in all three countries, the Major Project was

highly endorsed by academics as “…it recognises the need for industrial

experience and learning of applied skills, and therefore make these projects a

compulsory part of the curriculum”. The group work aspect of the Major

Project was also endorsed by Mahnič (2008). The paper asserts that the

Major Project exercise is not just about technical skills, but also provides a

platform for the acquisition of skills such as teamwork, leadership, planning

as well as the production of formal documentation and an opportunity for

Pedagogical Intervention and Agile Software

233

students to obtain the experience of doing a project presentation to a formally

instituted panel consisting of academics as well as industry representatives.

The Pedagogical Challenge of the Major Project
In order to report on students’ acceptance of the agile approach towards

systems development, it became imperative to ensure that the student cohort

chosen for the current study subscribed to the principles of agile

methodology. However, getting the student cohort to abide by the dictates of

the XP process model in developing the Major Project system presented

itself as a pedagogical challenge. The XP approach of attaching less

significance to documentation could possibly result in a “cowboy”

development style (Ferreira & Cohen 2008) where there is complete

disregard for any formal aspects of software development such as

requirements gathering, design, planned development, testing and continuous

consultation with the system stakeholders. Wellington (2005) warned that the

most significant challenge in employing XP in a Major Project course is to

ensure that every student abides by the principles of agility and XP and

respects these development models as process driven. The temptation to

“dive into coding” (Sewchurran 2007) under the banner of being agile needs

to be guarded against. The pedagogical challenges of conducting a Major

Project exercise as part of a capstone module are well documented by

Sewchurran et al. (2006) from their experiences at the University of Cape

Town (UCT). However, a significant aspect of these challenges was the

problem experienced in trying to get students to “internalise” the essence of

the agile approach and to engage with the methodology in a conventional

manner thereby ensuring the development of a system that conforms to the

customer’s requirements and expectations. As part of the agenda for the

current study, a brief report is provided on the strategy used in overcoming

the pedagogical challenge of incorporating the agile software process model

as part of the Major Project capstone module.

The Pedagogical Strategy Used to Incorporate Agility
From a theoretical perspective, the educational theories of constructivism

and connectivism were deemed to be most appropriate as descriptors of the

Sanjay Ranjeeth, Ashley Marimuthu & Manoj Maharaj

234

strategy adopted to present the Major Project course. The learning theory of

Constructivism (emanating from contributions by the likes of Piaget,

Vygotsky, Bruner and Dewey) allude to the activity of constructing one’s

own knowledge from personal experiences rather than becoming dependant

on an intake of passive knowledge (Applefield et al. 2000). Development of

a fully functional business information system is quite an undertaking,

something that you would not expect many students to have experienced.

From a constructivist perspective, this could be seen as a significant

disadvantage to the students. In order to minimise this disadvantage, we

adopted a strategy of simulating this experience by focusing lectures and

practical sessions on the development of a generic point of sales system, a

strategy also used quite successfully by Demuth et al. (2002) for a similar

teaching agenda. This exercise provided students with the opportunity to

“construct” the appropriate cognitive structures that would facilitate an

awareness of the requirements for the development of the actual Major

Project system.

 In an attempt to get the students to internalise and identify with the

principles of XP, in response to the concerns raised by Sewchurran (2007)

and Wellington (2005), we adopted a connectivist approach. The

introduction to agile methodology and XP was conducted via a series of

lecture presentations. It was quite evident during these lecture sessions that

the terminology and methodological explanations used in these lecture

sessions only served to increase the abstractionism inherent in the whole

concept of agility. Hence, there was certainly a need for a formal pedagogical

intervention.

 From an educational theory perspective, we decided to use

connectivism as our underpinning theoretical model so that the process of

knowledge construction regarding XP could be facilitated. However, this

knowledge construction had to be guided or “cajoled”. The basic tenet of

connectivism (Siemens 2005) is that learning takes place when individuals

establish “connections” between elements in the learning domain in order to

construct new knowledge. Hence, we needed to present the elements that

underpin XP to students within a problem-solving context so that they could

create their own knowledge regarding XP (within the parameters of the Agile

Methodology). An opportunity presented itself, courtesy of the sentiments

expressed in Beck (2008), that in order for the agile approach to be

Pedagogical Intervention and Agile Software

235

successful, there has to be adequate software support (referred to as a

software tool) to underpin the software process model. In response to this

opinion, Microsoft (2012) released Windows Team Foundation Server

(WTFS), a software tool that is designed to support the entire agile process

model. After having conducted an inspection of the trial version of WTFS,

the authors realised that using WTFS as a software project management tool

would ensure that an XP approach would be enforced in the building of the

software artefact. This conclusion was based on the support for aspects of

agile development and XP that formed the core functionality of WTFS.

These included aspects such as user stories, tests cases, release dates, main

and navigator programmer (a reference to pair programming). Acquisition of

WTFS would incur a significant cost, time and effort overhead to the IS&T

division and there was no guarantee that students would use it to underpin

their Major Project effort.

 In order to resolve this dilemma, we decided to use the practical

sessions to get the students to build a scaled down version of WTFS which

we referred to as the User Story Application (USA). This strategy served the

dual purpose of ensuring that each Major Project group had their own

customised software project management tool as well as sufficient

knowledge of the components that were used in the building of that tool. In

this way, the entire agile approach comprising of aspects such as user stories,

test cases and pair programming became an integral part of the vocabulary

used by students in the Major Project course. The concept of XP and agile

development now seems to have gained widespread acceptance by the Major

Project student cohort thereby achieving the objective of reducing the

abstractionism inherent in these concepts.

Academic Framework Underpinning the Acceptance of Agile

Methodology
It is reported in Chan and Thong (2009) that the constructs of TAM,

perceived ease of use (PEOU) and perceived usefulness (PU), are generic

enough to be readily used for examining the acceptability of software

development methodology (SDM). The current study leveraged off the

adaptable nature of these constructs to provide a guiding framework to

Sanjay Ranjeeth, Ashley Marimuthu & Manoj Maharaj

236

investigate the acceptability of the core activities that underpin the agile

methodology for software development. From an IS research perspective,

this approach falls within the ambit of behavioural science research.

However, the current study also involves an incursion into the actual

software development process and as such, hovers on the periphery of design

science research as well. Design science research is anchored around the

basic tenet that an innovative IT artefact is developed and becomes the

source of inquiry from a research perspective (Wieringa & Moralı 2012;

Kuechler & Vaishnavi 2011; Kautz 2011; Niederman & March 2012).

However, this interpretation of design science research is still very

technically oriented and does little to bridge the gap between technical and

social aspects of IS research (Niederman & March 2012).

Table 1: Constructs of Agile Methodology Classified According to an IS

Research Framework

 Behavioural Science

Perceived Usefulness

(PU)

Perceived Ease of Use

(PEOU)

Design

Science

User Stories are effective in

capturing user requirements

Compiling a set of user

stories is easy to do

Test Cases are effective in ensuring

that the system works correctly

Test cases are easy to

construct and implement

The time allocated to the analysis

phase was sufficient

Refactoring the database

is easily accommodated

An evolving system design is

effective in directing the

development process

There is no need for a

specific design phase

The “quick route” to system

implementation improves the

prospect of refining user

requirements

The “quick route” to

system implementation

makes the system easier to

develop

Pedagogical Intervention and Agile Software

237

 In order to address this situation, Niederman and March (2012)

propose a second dimension to design research where the software design

and construction process itself may be viewed as the artefact of inquiry. By

doing so the IS research community would be making a practical and

relevant contribution to the software design and development process. In

accordance with this assertion, the current study adopts a similar stance by

viewing the agile software development process model, as embodied by XP,

as the source of inquiry. From an IS research paradigm perspective, this kind

of approach can be classified as an amalgamation of the behavioural and

design science domains. The overriding academic framework comprising of

TAM may be classified as part of behavioural science whilst the exploration

of specific aspects of agile methodology can be classified as part of the

design science framework.

 The academic framework for the current study is underpinned by the

dimensions of TAM that are operationalised via references to specific aspects

of the agile software process model. This overriding framework was used to

inform the design of the research instrument that comprises of a

questionnaire.

 Table 1 above illustrates the relevance of the academic framework to

the design of the questionnaire.

Data Collection & Analysis
A purposive sampling strategy was adopted in order to obtain responses from

final year IS&T students. The data collection instrument was a questionnaire

that was designed to elicit students’ perceptions on aspects of agile

methodology. The questionnaire was designed so that perceptions on aspects

of agile methodology (alluded to in Table 1) could be quantified on a 5 point

Likert Scale ranging from “strongly agree” (coded as 1) to “strongly

disagree” (coded as 5). The questions were phrased positively towards the

constructs of agile methodology and were classified along the dimensions of

PU and PEOU (in accordance with the acceptance framework of TAM). The

population consisted of 135 students and there was a response rate of 71%.

 It is reported in Sekaran and Bougie (2010) that several questions

may be used to measure a single concept. In order to obtain a measure of

Sanjay Ranjeeth, Ashley Marimuthu & Manoj Maharaj

238

quantification, “… scores on the original question have to be combined into a

single score” (Sekaran & Bougie 2010). In accordance with this suggestion,

the analysis of the responses was conducted by collapsing the individual

measures of the perception variables into 2 single dependent variables that

represented the mean of the individual responses. The dependant variables

represented PU and PEOU. An affirmation of the internal validity was

obtained by conducting a Cronbach alpha test for these variables. According

to Sekaran and Bougie (2010), a Cronbach alpha in excess of 0.6 indicates an

acceptable level of cohesiveness with respect to the grouping of questions. A

set of 5 questions was used to operationalise the PEOU variable. The

Cronbach alpha value obtained was 0.64 and fell within the acceptable range

alluded to by Sekaran and Bougie. The histogram representing the PEOU

variable is shown in Figure 1.

The summary data from Figure 1 (mean =2.52; median=2.4;

mode=2.2) indicate a majority acceptance (75% of responses were below 3

and 50% of the responses were below 2.3) of the ease of using agile

methodology. While these results are sufficient to indicate acceptance of the

PEOU of agile methodology, the low Cronbach alpha value obtained for the

PEOU variable became a source of concern as well as a catalyst for further

inquiry. Upon closer scrutiny of the data, it becomes apparent that 2

questions did not seem to fit well with the remaining 3 questions. These 2

questions required responses to the following statements:

 There is no need for a specific design phase (a reference to the whole

concept of not having a “big up front design” that is part of the agile

strategy).

 Refactoring/changing the database design to accommodate changing

user requirements is easy to achieve.

If these 2 questions are removed from the original set of questions, then

the Cronbach alpha value increases to 0.78 which is indicative of much

better cohesiveness with regards to the grouping of questions. A

frequency count of the refined set of questions used to measure the

PEOU variable is displayed in Figure 2.

Pedagogical Intervention and Agile Software

239

The summary data from Figure 2 (mean=2.09; mode=2.0; median=2.0)

indicate a higher level of acceptance (88% of the responses were below 3 and

74% of the responses were below 2.3) of the ease of using agile

methodology.

Figure 1: Frequency Count of PEOU of
Agile Methodology

Sanjay Ranjeeth, Ashley Marimuthu & Manoj Maharaj

240

 The PU variable was operationalised using a strategy similar to the

one used for the operationalization of the PEOU variable. A set of 5

questions was used to derive a quantitative value for PU. The Cronbach

alpha value obtained was 0.71 and fell within the acceptable range alluded to

by Sekaran and Bougie. The histogram representing the PU variable is shown

in Figure 3.

Figure 2: Frequency Count of PEOU
with of Agile Methodology Using a
Reduced Variable Set

Pedagogical Intervention and Agile Software

241

The summary data from Figure 3 (mean=1.99; mode=2.0;

median=2.0) indicate a high level of endorsement (97% of the responses

were below 3 and 82% of the responses were below 2.3) of the usability of

agile methodology.

 In order to operationalise the level of engagement with agile

methodology, students were required to provide a response with respect to

their participation in “agile activities”, more specifically elements that

underpinned XP. This included aspects such as frequency of participation in

Figure 3: Frequency Count of
Acceptance of the Perceived
Usefulness of Agile Methodology

Sanjay Ranjeeth, Ashley Marimuthu & Manoj Maharaj

242

group meetings, frequency of involvement with identification and

development of user stories, frequency of meetings with the system client/

business owner as well as the frequency of participation in pair

programming. These frequency values were summed and expressed as

percentage values (illustrated in Figure 4) reflecting the students’ level of

engagement with XP concepts.

Figure 4: Level of Engagement
with Agile Methodology

Pedagogical Intervention and Agile Software

243

The median value of 77% as well as negatively skewed distribution

illustrated in Figure 4 is indicative of a high level of engagement with the

elements of XP.

Discussion and Conclusion
In this article, we have contextualised the objectives of this study by

providing a justification for the research topic. It is envisaged that IS

researchers will make an effort to leverage off the wider range of IS research

topics that will become available as a consequence of the strategy of

integrating the 2 distinct IS research paradigms of behavioural and design

science. Whilst the current research agenda has a dominantly explorative

demeanour, the empirical evidence provided suggest that the outcome of

such research efforts can be beneficial to the IS academic and practitioner

community.

 The literature review as well as the data collection and analysis

efforts have jointly contributed towards the provision of a solution, within

the framework of this study, to the research problems that were identified at

the outset. This assertion is corroborated by the summary provided in Table

2.

Table 2: Summary of Research Problems and Outcomes

Research Question
Research

Method
Research Outcome

What does the agile

methodology entail?

Literature

Review

A definition and listing of

main characteristics of the

agile methodology

What are the

pedagogical

challenges of

implementing the agile

methodology?

Literature

Review

A strategy is required to

discourage “cowboy style

coding”(Wellington 2005);

A strategy is required to

facilitate the internalisation

of agile processes

(Sewchurran 2007)

Sanjay Ranjeeth, Ashley Marimuthu & Manoj Maharaj

244

What is the students’

level of acceptance of

Agile Methodology?

Quantitative

data

collection

and analysis

A high level of acceptance

of agile methodology is

reported on the basis of the

data analysis (74%

acceptance of PEOU and

82% acceptance of PU)

How well did the

students comply with the

requirements of XP?

Quantitative

data

collection

and analysis

A high level of compliance

is reported (An average

engagement level of 75% is

reported)

Table 2 provides an overview of the outcome of this study as well as

an indicator that agile methodology will be endorsed as a successful process

model for software development. However, the areas of concern, as

highlighted by inconsistent data responses, are that of not adopting a “big

design up front” (BDUF) as well as constant database re-factoring in order to

accommodate customer requirements that may have changed during the

system development process. With regards to the BDUF issue, a possible

source of rationalisation lies in the approach that is adopted in teaching the

systems development process at IS undergraduate level. The traditional

“offering” consists of systems analysis and design that is delivered as part of

the Systems Development Life Cycle (SDLC) through prescribed texts such

as those written by Satzinger, Jackson and Burd as well as Bentley and

Whitten. After having been accustomed to the routine of having a BDUF for

an entire year, the notion of not starting with comprehensive design models

for the system will create a “disorienting moment” (Hughes 2008) thereby

resulting in a response that may be inconsistent with the other responses

provided. The second inconsistent response emanates from the concern that

any re-factoring of a software system will generate regression errors (Schach

2008; Sommerville 2007; Mens & Tourwé 2004) that may be difficult to

resolve. The .Net framework also implements a “disconnected” data

architecture that creates a memory resident “snapshot” of the database. Any

change to the database structure will require re-generation of the memory

resident copy of the database as well as re-coding of data structures designed

Pedagogical Intervention and Agile Software

245

to facilitate database processing. Hence, the strategy of database re-factoring

will invariably receive mixed responses from the student cohort. The

anomalous responses regarding the strategy of adopting an evolutionary

modelling style as opposed to implementing a BDUF strategy as well as the

whole issue of constant database re-factoring and the impact it has on system

success is a viable area for future research concerning agile methodology.

From an overview perspective, the biggest challenge of

implementing an agile approach towards systems development lies in the

behavioural realm. The “lightweight” and flexible nature of the agile

approach could be perceived as an opportunity to trivialise the

methodological component of agile methodology in favour of development

practice that is not “plan-driven” (such as “cowboy” style coding) under the

“banner” of agile methodology. Whilst these remarks have been made on the

basis of the literature review and the empirical evidence that was reviewed as

part of the current study, they have also been endorsed in an interview that

the researchers conducted with IBM Research Fellow, Grady Booch (Skype

interview, June 11
th
 2012) where he emphasised the “socio-technical” nature

of agile methodology. The term “socio-technical” is a reference to the

recognition/incorporation of the behavioural traits of the software

development team towards the technical aspects of agile methodology as a

critical success factor in determining the success of an IS project developed

using an agile approach. Hence, while many research efforts may attempt to

quantify the success of the agile approach towards software development, it

is equally important to ascertain whether the software development team

adhered to the principles of agile methodology before the methodology itself

is evaluated.

References
Applefield, JM, R Huber & M Moallem 2000. Constructivism in Theory and

Practice: Toward a Better Understanding. The High School Journal 84:

35 - 53.

Basili, VR & AJ Turner 1975. Iterative Enhancement: A Practical Technique

for Software Development. IEEE Transactions on Software Engineering

1: 390 - 396.

Sanjay Ranjeeth, Ashley Marimuthu & Manoj Maharaj

246

Beck, K 1999. Embracing Change with Extreme Programming. Computer 32,

70 - 77.

Beck, K 2008. Tools for Agility. Microsoft White Papers June: 1 -12.

Beck, K, M Beedle, AV Bennekum, A Cockburn, W Cunningham, M

Fowler, J Grenning, J Highsmith, A Hunt & R Jeffries 2001. Agile

Manifesto. Available at: http://agilemanifesto.org/.

Benbasat, I. & RW Zmud 2003. The Identity Crisis within the IS Discipline:

Defining and Communicating the Discipline’s Core Properties. MIS

Quarterly 27,2: 183 - 194.

Bergin, J, J Caristi, Y Dubinsky, O Hazzan & L Williams 2004. Teaching

Software Development Methods: The Case of Extreme Programming.

Paper presented at the ACM. SIGCSE Bulletin.

Chan, FKY & JYL Thong 2009. Acceptance of Agile Methodologies: A

Critical Review and Conceptual Framework. Decision Support Systems

46: 803 - 814.

Cohn, M 2012. Agile Succeeds Three Times More Often Than Waterfall.

Available at: http://www.mountaingoatsoftware.com/blog/agile-succeeds

-three-times-more-often-than-waterfall. (Accessed in July 2012.)

Davenport, TH & ML Markus 1999. Rigor vs. Relevance Revisited:

Response to Benbasat and Zmud. MIS Quarterly 23,1: 19 - 23.

Davis, FD 1985. A Technology Acceptance Model for Empirically Testing

New End-user Information Systems: Theory and Results. Massachusetts:

Institute of Technology, Sloan School of Management.

De Villiers, MRR, S Lubbe & R Klopper 2007. Action Research: The

Participative Researcher or Experiential Approach 1. Alternation 14,1:

218 - 242.

Delone, WH. & ER McLean 2004. Measuring e-Commerce Success:

Applying the DeLone & McLean Information Systems Success Model.

International Journal of Electronic Commerce 9: 31 - 47.

Demuth, B, M Fischer & H Hussmann 2002. Experience in Early and Late

Software Engineering Project Courses. IEEE 241-248.

Dybå, T & T Dingsøyr. 2008. Empirical Studies of Agile Software

Development: A Systematic Review. Information and Software

Technology 50: 833 - 859.

Fällman, D & A Grönland 2002. Rigor and Relevance Remodeled. Citeseer

10-13.

http://www.mountaingoatsoftware.com/blog/agile-succeeds

Pedagogical Intervention and Agile Software

247

Ferreira, C & J Cohen 2008. Agile Systems Development and Stakeholder

Satisfaction: A South African Empirical Study. Proceedings of the 2008

annual research conference of the South African Institute of Computer

Scientists and Information Technologists on IT research in developing

countries: riding the wave of technology. Wilderness, South Africa:

ACM.

Glass, RL 1994. The Software-research Crisis. Software IEEE 11: 42 - 47.

Hevner, AR, ST March, J Park & S Ram 2004. Design Science in

Information Systems Research. MIS Quarterly 28: 75 - 105.

Holcombe, M & C Thomson 2007. 20 Years of Teaching and 7 Years of

Research: Research when you Teach. Proceedingsof the 3rd South-East

European Workshop on Formal Methods. South-East European Research

Centre, Thessaloniki.

Hughes, E 2008. Taking First-Year Students to Court: Disorienting

Moments as Catalysts for Change. Wash UJL & Pol'y 28: 11.

Hulkko, H & PA Abrahamsson 2005. Multiple Case Study on the Impact of

Pair Programming on Product Quality. ACM 495-504.

Jami, S & Z Shaikh 2005. Teaching Computer Science Courses Using

Extreme Programming (XP) Methodology. IEEE 1-6.

Kautz, K 2011. Investigating the Design Process: Participatory Design in

Agile Software Development. Information Technology & People 24: 217

- 235.

Knight, LV, TA Steinbach & Y Levy 2008. Selecting an Appropriate

Publication Outlet: A Comprehensive Model of Journal Selection

Criteria for Researchers in a Broad Range of Academic Disciplines.

International Journal of Doctoral Studies 3: 59 - 79.

Kuechler, B. & V Vaishnavi 2011. Promoting Relevance in IS Research: An

Informing System for Design Science Research. Informing Science: The

International Journal of an Emerging Transdiscipline 14: 125 - 138.

Lee, AS 1999. Rigor and Relevance in MIS Research: Beyond the Approach

of Positivism Alone. MIS Quarterly 29-33.

Lynch, K, A Heinze & E Scott 2007. Information Technology Team Projects

in Higher Education: An International Viewpoint. Journal of Information

Technology Education 6: 181 - 198.

Mahnič, V 2008. Teaching Information System Technology in Partnership

with IT Companies. Organizacija 41: 71 - 78.

Sanjay Ranjeeth, Ashley Marimuthu & Manoj Maharaj

248

Mens, T & T Tourwé 2004. A Survey of Software Refactoring. Software

Engineering, IEEE Transactions 30: 126 - 139.

Microsoft. 2012. Agile Software Development. Microsoft. Available at:

http://msdn.microsoft.com/en-us/vstudio/gg605177. (Accessed in

February 2012).

Niederman, F & ST March 2012. Design Science and the Accumulation of

Knowledge in the Information Systems Discipline. ACM Trans. Manage.

Inf. Syst. 3: 1 - 15.

Parnas, D & P Clements 1985. A Rational Design Process: How and Why to

Fake it. Formal Methods and Software Development 80 - 100.

Parnas, DL 1994. Software Aging. IEEE Computer Society Press 279 - 287.

Pinch, T 2008. Technology and Institutions: Living in a Material World.

Theory and Society 37: 461 - 483.

Pressman, RS 2010. Software Engineering: A Practitioner's Approach.

Boston: McGraw-Hill Higher Education.

Rosemann, M. & I Vessey 2008. Toward Improving the Relevance of

Information Systems Research to Practice: The Role of Applicability

Checks. Management Information Systems Quarterly 32: 1.

Royce, WW 1970 Managing the Development of Large Software Systems.

Proceedings of IEEE WESCON 26:8.

Schach, SR 2008. Object-oriented Software Engineering. Boston: McGraw-

Hill.

Sekaran, U & R Bougie 2010. Research Methods for Business: A Skill-

building Approach. Hoboken, NJ & Chichester: John Wiley.

Sewchurran, K 2007. Recovering Student Misunderstanding about Agile

Development Practices. Proceedings of the Computer Science and IT

Education Conference, Mauritius. Informing Science Institute 671-679.

Sewchurran, K, M Eccles & E Scott 2006. Teaching Software Development

to Information Systems Majors Using an Action Research Process. Cape

Town, South Africa: SACLA, 2006.

Shackelford, R, A Mcgettrick, R Sloan, H Topi, G Davies, R Kamali, J

Cross, J Impagliazzo, R LeBlanc & B Lunt 2006. Computing Curricula

2005: The Overview Report. ACM SIGCSE Bulletin 38: 456 - 457.

Siemens, G 2005. Connectivism: A Learning Theory for the Digital Age.

International Journal of Instructional Technology and Distance

Learning 2: 3 - 10.

http://msdn.microsoft.com/en-us/vstudio/gg605177

Pedagogical Intervention and Agile Software

249

Sommerville, I 2007. Software Engineering. St. Andrews: Addison-Wesley.

Strode, D & J Clark 2007. Methodology in Software Development Capstone

Projects. 20
th
 Annual Conference of the NACCQ, Nelson, NZ.

Van Loggerenberg, J 2007. Those Who Can, Do, and Those Who Cannot,

Teach. Alternation 14,1: 277 - 291.

Van Valkenhoef, G, T Tervonen, B De Brock & D Postmus 2011.

Quantitative Release Planning in Extreme Programming. Information

and Software Technology 11: 1227 - 1235.

Vanhanen, J & H Korpi 2007. Experiences of Using Pair Programming in an

Agile Project. IEEE 274b -274b.

Versionone 2011. State of Agile Development. Available at:

http://www.versionone.com/state_of_agile_development_survey/11/.

Vijayasarathy, L & D Turk 2008. Agile Software Development: A Survey of

Early Adopters. Journal of Information Technology Management 19: 1-

8.

Wellington, CA 2005 Managing a Project Course Using Extreme

Programming . IEEE T3G-1.

Wieringa, R & A Moralı, 2012. Technical Action Research as a Validation

Method in Information Systems Design Science. Design Science

Research in Information Systems. Advances in Theory and Practice 220

- 238.

Worrall, L, S Lubbe & R Klopper 2007. Academic Research and

Management Practice: Is the Relevance Gap Closing? Alternation 14:

292 - 316.

Sanjay Ranjeeth

Department of Information Systems & Technology

University of KwaZulu-Natal

Pietermaritzburg, South Africa

ranjeeths@ukzn.ac.za

Ashley Marimuthu

Department of Information Systems & Technology

University of KwaZulu-Natal

Durban, South Africa

marimuthum@ukzn.ac.za

Sanjay Ranjeeth, Ashley Marimuthu & Manoj Maharaj

250

Manoj Maharaj

Department of Information Systems & Technology

University of KwaZulu-Natal

Durban, South Africa

maharajms@ukzn.ac.za

